


which 1is used in the expectations comprises the block diagonals of
relationships among observations within a generation. The procedure
yields unbiased and translation invariant estimators of

ail, the additive genetic variance in the base population and of ae.

Although in this example we deal only with the balanced case,
extension of the procedure to unbalanced data is straightforward.

As an illustration of the above procedure, we show the results of
Monte Carlo simulations. We sample from a non-inbred base population
which is in equilibrium within and between chromosomes. Thus
initially, each gamete has a value for the trait which is normally
distributed with variance ojl/2. After a first generation, the gametes
produced by an individual are sampled from a normal distribution with
expected value equal to the mean value of its maternal and paternal
chromosomes and variance equal to (a”™/2)<i1-F”>, where is the
individual®s inbreeding coefficient.

Table 1. Inbreeding coefficient (F), additive genetic variance (from
distribution of pairs of chromosomes) within generations
oii(t), and estimates of initiajl additive genetic variance
estimated within generations, o™ (1) and using all the data
cA(l). Twelve cycles of random mating with 5 males and 50
females each generation.

-2
1 4 7 12 Mean S.D.
F 0.00 0.08 0.14 0.24 9.78 4.40
2
a () 9.47 8.88 8.22 7.24
~2 * -Average S.D. - 12.55
aA(l) 9.84 10.44 9.20 9.65

Table 1 shows average values of the inbreeding coefficient, the
variance among genotypic values within generations and the estimates of
the base population variance obtained from (5) together with the
standard deviation of 200 replicates. As inbreeding builds up the
additive variance declines but the proposed estimator yields estimates
in good agreement with the additive variance at generation 1. As
expected, the use of all the data leads to a considerably more
accurate estimate.

SELECTION

In a large population, with the genetic model we have assumed in
this work, selection causes a change in the additive variance due to
generation of linkage disequilibrium (Bulmer, 1971). In the absence
of linkage, after t cycles of selection.
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2 2
ctA M = cA

CL<t+1) = 0.5 h rIA(t)aAZ(t) + 0.5 CL(t) (7) where

a 111 is the additive genetic variance before selection, CL(t)

is the effect of disequilibrium, r” is the correlation between
selection criterion and breeding value and h is a constant that
depends on the type of selection applied. Since selection generates
disequilibrium and recombination breaks it down, an equilibrium value
is rapidly reached and the additive variance stabilizes.

<1) + CL(Y) (6) and

The problem that we address in this section is how to obtain
estimates of the additive variance of the base population before
selection started operating, using data that have arisen by some type
of selection.

1. Statistical Model and Methodology.

He use the same model we discussed in the section on random

mating. The methodology has to be modified since, as a result of
selection, the variance of the vector of all observations, y , is
2 2

VQ )= zGz'a. + la”, where G is the additive relationship matrix

S e S
appropriately modified to account for selection. In order to do this,
we need to know the type of selection applied and the criterion of
selection. If selection is by truncation, on the individual's own
performance, h and rIA in (7) are replaced by -i(i-x2T) and h
respectively, where x* is the truncation point and h (t) is the
heritability at generation t.

As an illustration, assume that selection operates on the male's

own performance. At generation 2, the diagonals of G must be

2
multiplied by (1-0.25 i(i-xT>h <U) and the off-diagonals by

At generation three these are replaced by the
appropriate expressions that can easily be derived from (6) and (7).
In late generations, these formulae become more cumbersome to write.
One can use the equilibrium value or some approximation on the lines
suggested by Thompson (1976).

The results of Monte Carlo simulation of two cycles of selection
(discrete generations) using this approach are illustrated in Table
2. The data comprise 300 observations; the first 100 are from
unselected sires and the remaining 200 from selected ones. The
additive genetic variance declines as selection proceeds, but using
the proposed estimator, the estimate of 9.66, over 400 replicates, is
9.67. The use of the relationship matrix without accounting for
disequilibrium yields, as expected, an estimate which is biased
downwards (Table 2).
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Table 2. Estimates of the additive genetic variance before selection

2 _ _ _ _
< (1), using the proposed method and using the relationship
matrix not modified to account for selection. Ten males out
of 100 are selected for 2 generations and each one is mated
to 10 dams. (400 replicates)

Mean S.D.

[(D 9.66 * 1.65

Estimate of oiid) using proposed method 9.67 5.65
Estimate of atid) 1ignoring disequilibrium 7.01 4.07

*At generation 2 and 3, this variance declines to 8.67 and 8.30

respectively. The corresponding predicted values using () and (7)
are 8.68 and 8.34. All data are used to estimate the initial
variance.

DISCUSSION

Probably the most limiting characteristic of the method we have
outlined is that it requires knowledge of the parameters we set up to
estimate. This requirement also has to be fulfilled in a method
proposed by Henderson (1980) under a different selection model and we
cannot provide a better solution to the problem than the one suggested
by him. Namely, one has to use educated guessed values and as these
approach the true values the bias due to selection decreases.

It is also assumed that selection intensities are known. This Iis
not as troublesome as it may appear since the value of i(i~xT) is
close to 0.8 for a wide range of selection intensities. The method
has to be extended to allow for overlapping generations. Comparison
with other methods such as MINQUE may be interesting regarding the
sampling error of the estimators. The modification of the relation-
ship matrix can probably be incorporated in the mixed model equations
for sire evaluation. This will be presented elsewhere.

Finally we want to point out that the model used assumes that
gene frequencies do not change as a result of selection. If genes of
large effect are present this will not be true and this method will
not yield estimates of the base population additive variance.

SUMMARY

In random mating populations with discrete generations, the
additive genetic variance declines due to random genetic drift. Using
the complete vector of observations, it is shown that inclusion of the
additive genetic relationship matrix among the observations in various
expectations of quadratic forms, leads to unbiased estimators of the
base population additive genetic variance. Under a model of
infinitely many additive loci, selection causes negative linkage
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disequilibrium with associated reduction in the additive genetic

variance. It is shown tfhat appropriate modification of the
relationship matrix leads to estimators of the base population
variance prior to selection. The results are illustrated with Monte

Carlo simulations.

RESUMEN
En poblaciones apareadas al azar con generaciones discretas, la
varianza'genetica disminuye debido a la derive genetica. Demostramos

que a partir del vector de todas las observaciones, inclusion de la
matrix de parentezco en las debidas esperanzas de formas cuadraticas,
Illeva a estimadores insesgados de la varianza genetica en la poblacion
base. Bajo un modelo de infinito numero de loci, la seleccion causa
desequilibrio de ligamiento negativo con consecuente disminusion de la
varianza genetica. Mostramos que modificando la ralacion de
parentezco en forma apropiada, obtenemos un estimador de la varianza
en la problacion base. Los resultados son ilustrados con simulacion
de Monte Carlo.
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