
ESTIMATION OF BIVARIATE VARIANCE COMPONENTS

J. Juga and R. Thompson

Finnish Animal Breeding Organisation, P.O. Box 40, SF-01301, Vantaa 30, Finland and 
AFRC Institute of Animal Physiology and Genetics Research, Roslin, Midlothian, EH25 9PS,

U.K.

SUMMARY

The use of derivative-free methods to give maximum likelihood estimates of bivariate 
variance parameters is illustrated. An algorithm is given for the case when the same fixed 
effect model applies to both traits and the variance matrices for the two traits and the 
covariance matrix between the two traits have the same structure. Each of these three 
matrices depending on two variance parameters, giving a total of six parameters. By 
reparameterising in terms of canonical heritabilities and a transformation matrix a six 
dimensional problem is reduced to a two-dimensional problem. Extensions to other models 
are briefly indicated. One important case is when each animal is measured on only one trait.

INTRODUCTION

With the advances in compute technology it is becoming more practical to predict 
breeding values using multivariate individual animal models. There is an increasing need to 
have estimates of variance and covariance parameters for these models. Maximum likelihood 
techniques (ML or REML) have been advocated as they use all the available information and 
can take account of known selection decisions as in selection experiments (Henderson et al„ 
1969) and are less biased than analysis of variance techniques when the selection decisions 
are not fully known (Meyer and Thompson, 1984).

Estimation in multivariate cases has mimicked univariate methods in using methods 
that have used first and second differentials of the log-likelihood. These calculations can be 
expressed in terms of the mixed model equations (Henderson, 1973) and the inverse of this 
set of equations. As the number of traits increase so do the number of equations. In some 
cases the equations can be simplified using a canonical transformation (Meyer, 1985) or a 
Choleski transformation to make the residual covariances zero (as in Henderson et al.. 1959).
Recently, the advantages of ML methods based on derivative-free approaches have been 

shown (Graser et al.. 1987, Meyer, 1989) for univariate analyses.

We consider a extension to two variates. First for the case when both traits are 
measured on all animals and the same fixed and random model holds for both traits. We 
assume there are two random effects associated with each trait giving rise to four variance 
and two covariance parameters, a total of six parameters. In the analogous univariate case 
the optimization of two parameters, e.g. genetic and residual variance, can be reduced to a 
one-dimensional search because the residual variance can be easily found for a given value 
of heritability. We suggest an analogous decomposition of the six parameters into a 2x2 
transformation matrix that makes the traits independent, both genetically and phenotypically, 
and two canonical heritabilities of the independent traits. It is shown how to derive the
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estimate of the transformation matrix given the values for the canonical heritabilities. 
Maximization is then only over the two dimensions of canonical heritabilities.

METHOD

Let the model for the ith (i = 1,2) trait be

y, = Xb, + Zaj + e.

where

y, is a Nxl vector
b, is a txl vector
a, is a sxl vector
e, is a Nxl vector

of observations, 
of unknown fixed effects 
of additive genetic effects, and 
of residual.

The matrices X and Z are Nxt and Nxs matrices that link effects to y, with X of rank 
t. It is assumed

E(y,) = Xb„ Efa,) = E(e,) = 0
Vaffaj) = crA12 A, Var (e,) = Ioel2 and cov (â , e,) = 0 and 
Cov (a„ a*) = oA12 A, cov (e,,^) = IoE12 and cov (a„ e j  = 0.
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We wish to calculate the residual likelihood, L, associated with error contrasts of y, and y2 
for a given value of R and G. Suppose

R IT1, and G
Yi

0 T,.
and U T-i

and y.i = “ n Yi + u12 y2 

y«2 = «2i yi + ua y2

The traits y„, and y^ are then independent with variance H, = I + ZAZ' y, and with the total 
likelihood of error contrasts, L, satisfies

2L = 2L., + 2L*j - (n-t) log | IT  |

where is the likelihood associated with ŷ .

If we define
then L* can be found from repeated Gaussian elimination on M, (Smith and Graser, 1986) 
using
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Lu, = const - log | C, | - y„' P, y* - s log(y) (2)

where P, = H,1 - H,’1 X (XH^X)’1 X U ,1.

Then log | C, | is the sum of the logs of the pivots when the rows associated with X and Z 
are eliminated. The sum of squares of residuals yj P, can be found by using Y = (y, 
y j  in (1) and finding the (2x2) residual matrix W,. Then yui' P ^  = (u,, u^)' W, (tij, u^.

For any pair of values of y, and y2 | C, | , | Q  | , W, and W2 can be calculated 
and the L for any pair of lineasr combinations of traits defined by a 2x2 matrix U. The 
maximum likelihood estimate of U can be found (Juga and Thompson, 1990) by considering

y>d = S, [cos ei(Cny, + C12yj) + sin 0, (Cj,y, + C^y*)].

This transformation involves three stages forming linear combination of traits depending on 
Cy. Secondly a rotation of axes using .-.j and finally scaling using Sj. If C is chosen so that 
the off-diagonals are zero then it is found that the maximum corresponds to a null rotation 
(0, = 0, 02 = Jt/2). It is found that

y„; -  v'K^=0l(C 11y1+C11yJ)
JV* -  v/[(A/-f)/d2](C2Iy1+C2Jy2)

where C contains the elements Qj and satisfies C W, C' = I and C W 2 C  = D with D a 
diagonal matrix with elements d,, dj and d, > d^

Optimization of y  and y2 can be carried out using a derivative-free method such 
as the method of approximating the likelihood using a quadratic approximation. Note that 
for calculations of likelihood associated with c different canonical heritabilities canonical 
traits, c2 likelihoods can be calculated from each pair of canonical traits. Because the 
likelihood is symmetric in y, and y2 it is perhaps useful to parameterize in terms of (y, + 
yJ/2 and (y, - y^/2 and restrict (y, - y^/2 to be positive.

DISCUSSION

This note has presented a very specific method to aid in estimation of bivariate 
parameters. Meyer (1990) has considered more general multivariate models with p traits and 
more components. For two components her procedure is equivalent to optimization of a pxp 
transformation by derivative-free methods for specific values of canonical heritabilities. The 
method in this paper might suggest improved starting values for her iterative procedure by 
considering pairs of traits. For estimating three component matrices (R, G, and G2) a 
transformation usually does not exist to simultaneously diagonalise these three matrices, and 
so the traits cannot be transformed to independence. But it might be computationally
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attractive to maximise parameters over the restricted space such that R = TT, G, = TD,T', 
G2 = TDjT', with D, and D2 diagonal, because this is much easier computationally and might 
be close to the unrestricted estimate.

When D, and D2 are not diagonal the maximum likelihood of T is the solution 
of another eigenvalue problem (Thompson, in prep.), based on using a 4 x 4 residual matrix 
using Y containing 4 vectors of length the total number of observations and

Y
y, y2 o o 

0 °  y, y2j
and X

X 0 
0 X ‘

Another model that fits this general framework is when there are different fixed 
models for two traits and only one trait is measured on each animal, so that there is no 
environmental correlation between traits. For example for traits measured in different sexes 
or environments (Schaeffer et al.. 1978). In this case the algorithm of Meyer (1989) which 
allows estimation of two genetic variances and their covariance can be used, with Y in (2) 
now containing two vectors of length the total number of observations and

Y - y. o 

0 >2.
X

xl 0 
0 x2

An iterative technique can be used to quickly finf the residual variances for given scaled 
genetic variances R ,/2GR1/Z from a residual matrix W.

This idea of extending the Y vector can be useful for multivariate data when the same 
model holds for all traits but some animals are culled before traits can be measured (Garrick, 
1988).
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