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SUMMARY

The classical approach of the animal model was discussed for a population 
undergoing selection and homogamy. Reference to a state of equilibrium of the 
genetic variance was chosen rather than that of the usual base population. A 
first approach concerning the case where the variance changes was also 
suggested.

TEXT

The animal model is often considered as an universal solution for the 
genetic evaluation of horses. HINTZ (1975) was the first scientist who proposed 
BLUP evaluations and ARNASON (1982) developed the animal model which is now 
currently used. However, the conditions of application should be more accurately 
determined so as to evidence some points which require further research.

The genetic hypotheses for the use of animal models are the following :

- the additive heredity of the trait,

- a great number of independent genes governing the trait,

- a genetic correlation between individuals expressed by two-fold the
MALECOT'S coefficient of relationship (half the numerator of WRIGHT'S
coefficient of relationship).

In these conditions, it was possible to show (KENNEDY and SORENSEN, 1988) 
that if the heritability value in the base population at panmictic equilibrium 
was known the model would supply an optimum evaluation of breeding animals and 
hence of genetic progress due to selection. It is noteworthy that as the 
evaluations take into account the genetic value of mates, the problem of 
assortative mating was also considered.

These statements involve :

- knowledge of the heritability of the base population. This is mostly not the 
case because it is generally the population which is not controlled. Thus, the 
only available heritability estimates include a more or less large proportion 
of linkage disequilibrium. However, they are well fitted for evaluation in 
classical indexation using regression as suggested by LANGLOIS (1988a,b). But 
on account of present developments this procedure is however archaic.

- the stability of the genic variance o^A defined as the genetic variance 
achieved in panmixia with the same genic frequencies. This constancy 
determines that of the variance of errors due to me'iotic sampling. The 
expression of this intra family variance is indeed very important. According
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to BULMER (1980) it is assumed that Var(e) = cr'A (l-F)/2, but this is only 
true in certain condition in particular the stability of genic variances in 
the parents and the absence of linkage diseguilibrium. We supplied a more 
general expression (LANGLOIS, 1990). However, when using the animal model the 
main point is not the expression of this variance but rather its stability 
which cannot always be obtained immediately.

- the expression of the covariance between relatives as two-fold MALECOT'S 
coefficient of relationship multiplied by the genic variance. However, this is 
true in the case of selection while it is not true when the population 
undergoes homogamy (FISHER 1918, WRIGHT 1921, LATTER, 1965, CROW and KIMURA, 
1970, BULMER, 1980, GIMELFARB, 1981 a and b, LANGLOIS, 1975 and 1981, 
NAGYLAKI, 1978 and TALLIS, 1985).

At the present time, we attempt to generalize the expression of 
covariance beetween relatives different from that proposed by COCHERHAM (1954) 
or KEMPTHORNE (1957). The approach is the following :

According to the genetic model :

A, = (A„ + At,)/2 + e (1)

where A represents the additive genetic value, i, s and d indicating the animal, 
its sire and dam, respectively.

where e represents the prediction error due to meiosis aleas, e is independent 
of Am et At3.

We have then :

C.ov(A, ,A„) = Var(A„)/2 + Cov( AM, A<3)/2 (2)

Cov(A,,A„) = Var(A„)/2 + Cov(A„,A,„)/2 (3)

In addition, we have :

Cov (A , , A, ) = Cov(A,,A„) Cov( A„, A , )/Var (A„ )

+ Cov(A,,At3) Cov( A<3, A, )/Var (Aa) (4)

which, with (2) and (3), leads to :

Cov (A, ,A:, ) = Cov(A„,A>) [1 + b'"’/A_]/2

+ Cov(A.,,A,) [1 + bn"/A„]/2 (5)

where b is the regression coefficient of Ac3 on A„ or of A„ on A<3.

Moreover :

Var(A , ) = [ Var(A„) + Var(At3)J/4 + Cov(A„,A^J/2

*■ Var (e) (6)

if dividing the equations (5) and (6) by :

Var(A,) - Cov(A„,Al3)/2 = [var(A„) + Var(Ad)]/4 + Var(e)
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we can define coefficients b,, b_.T bi, and b„a such as :

Ib jj = (1 + b’"3/ . - )  V i / 2  M l  + b ''" /a a )W 2

bJ± = 1 + b „ , , / 2

( 7 )

( 8 )

This system of recurrent equations differ markedly from that usually proposed to 
calculate two-fold MALECOT'S coefficients of relationship, c(>ij

Then if aJ;) = 2 <t>L), b,j is only equal to the former if Cov(A„,Ad) = 0. In the 
other cases b 1;) is very different from a,-,. However, apart from one corrective 
factor it also expresses the relationships between additive genetic values.

It can be shown for all i and j according to their definitions that :

Cov (A,,A,) = b,j  [Var(Aj) - Cov(A_,A„)/2]

It should also be noticed that bij is calculated in the same way as 2 <t>ij, but 
that whenever we use 1 / 2  in the path beetween two generations, we use 1 / 2  ( 1  + 
b'v<3/„„) in the path from sire to offspring and 1 / 2  ( 1  + bA”/Aa) in the path from 
dam to offspring. Assuming that Cov(A„,A,,) is constant for any generation and 
Var(A„) = Var(A<,) led FISHER (1918) to express the correlation grandparent
offspring, great-grandparent offspring etc. The general case is more complicated 
because selection leads often to dissymetric paternal and maternal path and 
because it is also difficult to assume the Constance of genetic variance and 
hence that of the covariance between mates.

On the basis of this observations it appears that the animal model in its 
usual approach underestimates the correlations between genetic value of animals 
when Cov (A„, AtJ) / 0. However, in many cases this does not seem to be a big 
problem.

However, the approach could also be used when the genetic correlation 
between mates is different from zero. The easiest way of doing would then be to 
assume that the correlation is constant providing the existence of a stable 
genetic variance.

Instead of the hypothesis on the base population we would then use a 
genetic equilibrium for all animals studied whatever their generation or year of 
birth.

In the other cases genetic parameters varying according to generation or 
year of birth should be available. These parameters can be estimated using 
subsamples of the file and this makes our approach different from the classical 
one.

for i > j

for i = j

( 9 )

( 1 0 )
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