CURVILINEARITY IN THE RELATIONSHIP BETWEEN TRAITS COMPETING FOR RESOURCES: A GENETIC MODEL

J. Sölken and J.W. James
Dept. of Livestock Sciences, Univ. of Agriculture, Gregor-Mendel-Str. 33, A-1180 Vienna, Austria
Dept. of Wool and Animal Science, Univ. of New South Wales, Kensington 2033, NSW, Australia

SUMMARY
A genetic model is presented that is based on acquisition-allocation pleiotropy of loci coding for two traits competing for resources. If the acquisition of resources is limited (has a plateau), it is shown that such a model produces significant curvilinearity in the genetic relationship between the traits. The model will be used to check different methods of estimating curvilinear genetic relationships.

INTRODUCTION
The population genetic concept of describing the relationship between traits using genetic and phenotypic covariance matrices relies implicitly on the assumption of linearity of such relationships. On the phenotypic level, though, the relationship between two traits is often found to be curvilinear and therefore can be described using polynomial regression equations. Whereas curvilinearity may sometimes be caused by scale effects, there is no reason to assume that relationships between traits are always linear on the genotypic level. Various physiological limitations and feedback mechanisms will potentially produce deviations from linearity.

One situation where one might expect curvilinearity is when two traits are competing for resources and resources are limited. In the present paper we examine a simple genetic model where two sets of loci are involved in the acquisition as well as in the allocation of resources. It will be shown that significant curvilinearity in the relationship between traits may be produced by such a model.

THE MODEL
We consider two traits, z_1 and z_2, sharing the same pool of resources, R (Figure). The proportion of R allocated to z_1 is P, so that

$$z_1 = PR \quad \text{and} \quad z_2 = (1-P)R \quad (1)$$

We assume that there are two sets of loci, L_1 and L_2, each with a large number of genes with small effect. An increase of $+$ alleles in L_1 or L_2 will have a positive effect on R, the resources acquired. An increase of $+$ alleles in L_1 will also effect an increase in P, shifting more resources toward z_1, whereas an increase of $+$ alleles in L_2 will have the opposite effect of increasing the share of resources available for z_2. Assuming that other genes also affect R and P, we may describe our model by

$$R = s + (1-s)F \quad \text{and} \quad P = t + (1-t)G \quad (2)$$

where s is the proportion of resources acquired independently of variation of $+$ alleles in L_1 and L_2, and t gives the proportion or resources allocated to z_1 and z_2 acting independently of L_1 and L_2. The values of s and t will depend on effects due to loci belonging to the L_1 and L_2 complex but already fixed and to loci acting independently from L_1 and L_2. F and G are functions of L_1^* and L_2^*, the
proportions of +alleles in the two sets of loci, describing the acquisition and allocation process due to L_1 and L_2. One way of modelling F and G is to take

$$F = 1 - \exp\left(-k\frac{L_1^+ + L_2^+}{2}\right) \quad \text{and} \quad G = \frac{L_1^+}{L_1^+ + L_2^+}$$

(3)

F is a function that will asymptotically approach 1 as L_1^+ and L_2^+ increase. The shape of this function is determined by the parameter k. Function F introduces positive covariance between z_1 and z_2, as with an increase in either L_1^+ or L_2^+ the total resources available for both traits increase. G, on the contrary, introduces negative covariance between z_1 and z_2 because as e.g. L_1^+ increases, the share of resources available for z_2 decreases.

Two essential features distinguish this model from earlier models by Rendel (1963, 1967, see also Sheridan and Barker, 1974) and by Houle (1991):

- the two sets of loci L_1 and L_2 exert some influence on the acquisition and on the allocation of resources (acquisition-allocation pleitropy).
- the availability of resources does not increase linearly with the proportion of +alleles in L_1 and L_2 but approaches a limit.

Whereas the second feature of the model is certainly a realistic one, the first is debatable. Houle (1991) used a model where acquisition and allocation of resources were determined by two independent sets of loci, arguing that while the assumption of no acquisition-allocation pleiotropy may not be realistic, it may be closer to reality that the converse assumption that all loci affect all characters. At least when we are concerned with energy input and output, as in many economically important traits in farm animals, it seems reasonable to assume that individuals ranking high for output will also be able to acquire more resources, i.e. eat more. The fact that not all the acquisition and allocation process is determined by the mechanisms assumed in F and G is dealt with by the inclusion of parameters s and t in formulae (2).

RESULTS

The relationships between traits following the model described above were investigated by assuming a population where the average proportions of +alleles in L_1 and L_2 (denoted by L_1^+ and L_2^+) follow a bivariate normal distribution with means 0.5, standard deviations 0.1 and correlation 0. Simple quadratic regression between the standardized traits z_1 and z_2 was performed in both directions.

Effect of the shape of the acquisition function

Figure 2: Acquisition function F for different values of k.

The form of the acquisition function F in (3) depends on parameter k. For larger k, the function will approach 1 more quickly as L_1^+ and L_2^+ increase. Figure 2 shows the acquisition function with values of 3 and 6 for k. Regression lines for the regression of z_2 on z_1 are given in Figure 3 for different values of s and t in (1). Comparison of the sets of curves in the left and right parts of Figure 3 show that the two different forms of the acquisition function investigated here do not produce vastly different relationships between z_1 and z_2. With the more extreme curve ($k=6$), the relationship is in general more negative but otherwise the shape of the curves is more determined by the values of s and t.

152
Figure 3: Regression curves for regression of z_2 on z_1 (both traits standardized) with different forms of the acquisition curve (determined by parameter k). Values in brackets denote $(1-s,1-t)$ and give the proportions of the acquisition process and allocation process controlled by the mechanisms described in (3).

For interpretation of the curves in Figure 3 we have to remember that function F (responsible for the acquisition process) introduces a positive and function G (responsible for the allocation process) produces a negative relationship between the two traits. If the proportion of resources acquired through F (first of the two numbers between brackets in Figure 3) is small and the proportion of resources allocated to either of the two traits through G (second number) is high, the relationship is negative and the deviation from linearity is small. In the opposite case (big effect of F, small effect of G) the relationship is clearly curvilinear. In this case, at low levels of L_J and L_I, an additional $-t$-allele at L_1 will have an enhancing effect not only on z_1 but also on z_2 as the additional availability of resources will outweigh the shift of resources away from z_2. At high levels of L_J and L_I, the allocation process becomes dominant yielding a negative relationship between z_1 and z_2.

Acquisition of resources influenced by only one set of genes

With definition of F and G as in (2) we assume implicitly that the L_1 and L_2 gene complexes are of equal importance, for the acquisition of resources as well as for the allocation of resources. Various deviations from this assumption are imaginable. Here we shall consider the case where F in (3) is replaced by

$$F = 1 - \exp(-kL_1^*)$$

so that only the L_1 loci are involved in the acquisition but loci from both sets determine the allocation of resources. Unlike in the earlier example it matters in this case if we regress z_1 on z_2 or vice versa. Figure 4 gives both types of regression curves for $k=3$ and varying s and t. When we take z_1 as the independent variate, the curves are somewhat similar to the previous ones (Figure 3), but more curved. This is what we expect as for low L_1^* trait z_2 is profiting more from an increase of L_1^* (yielding an increase in resources). When z_2 is the independent variate, the curves are less easy to
understand as we are interpreting against the causal flow. The regression lines are generally less curved and sometimes concave (positive quadratic term).

Figure 4: Regression curves for z_2 on z_1 (left) and z_1 on z_2 (right) when acquisition of resources is only influenced by genes from the L_1 complex. For definition of values in brackets see Figure 3.

DISCUSSION
The results show that substantial curvilinearity in the relationship between two traits competing for resources may arise from the model under consideration. Even if the model is too simple or wrong there is reason to believe that physiological limitations and feedback mechanisms cause curvilinearity in the genetic relationships between traits. It seems therefore worthwhile looking for such relationships. The model shown here will be used in simulations to evaluate different approaches of estimating curvilinear genetic relationships.

REFERENCES