ANIMAL X NUTRITIONAL REGIME INTERACTION IN POSTWEANING GROWTH
TRAITS OF YOUNG BULLS

S.J. Schoeman and G.F. Jordaan

Department of Animal Sciences, University of Stellenbosch, Private Bag X1,
Matieland, 7602, Stellenbosch, South Africa

SUMMARY
Postweaning growth performances of 1610 young bulls were recorded in both feedlot and under
pasture. (Co)variance components were estimated using a multivariate restricted maximum
likelihood analysis. The pedigree file included 22472 animals. Heritability estimates for
weights and gain in both phases correspond to most previously reported estimates. The genetic
correlation of gain between the two phases was -0.10, suggesting a large genotype x nutritional
regime interaction and a major re-ranking of animals breeding values across environments.
Results of this analysis therefore suggest the need for environment-specific breeding values for
postweaning gain.
Keywords: Beef cattle, genetic correlation, genotype x environmental interaction, heritability,
postweaning growth.

INTRODUCTION
Beef cattle production is practiced under a large variety of environmental conditions. In many
cases, animals are selected for production in one environment, while they should produce in quite
a different environment. The common practice in many beef cattle herds is then to evaluate
young bulls on central testing feedlots (phase C or D of the National Beef Cattle Performance and
Progeny Testing Scheme) and to select them on feedlot performance, while cows are kept and
produce on pasture. Their progeny sometimes have to grow on limited forage availability.

In several studies such significant genotype x environmental interactions were obtained, resulting
in re-ranking of animals (Tess et al., 1979; Bertrand et al., 1985, 1987; De Nise and Ray, 1987;
Bradfield et al., 1997). In most of these cases, halfsibs were evaluated under different
environmental conditions. Most of these studies were restricted to weaning weight. This study
reports on the postweaning performance and predicted breeding values of the same young bulls' performance tested under two different nutritional regimes.

MATERIALS AND METHODS
Animals. Growth performance of 1610 young bulls from a multibreed synthetic herd of
approximately 4000 cows of the Johannesburg City Council were evaluated after weaning from
1988 through 1993 in both feedlot and pasture. The number of bulls varied from 215 to 363 per
year. Initial and final weights were recorded for each phase and individual average daily gains
(ADG) were calculated.

The bull calves were weaned at an average age of 214 days. The best calves were subsequently
selected on weaning weight and conformation excellence. They were then gradually adapted to a
feedlot diet consisting of a concentrate feed (12.2 MJME/kg DM) as well as hay, which were all
provided ad libitum. The feedlot testing phase of 89 days started at the age of 263 ± 15.7 days
when the young bulls weighed 270 kg on average.

After the feedlot phase, they were gradually adapted over a period of 40 days to a pasture
performance test (mainly kikuyu and annual ryegrass). The pasture testing was 92 days long.
Data description. The 1610 young bulls were the progeny of 146 sires, i.e. an average of 11.03 progeny per sire. They varied from two sires with only one progeny each to one sire with 39 progeny tested. Most dams (1040) only had one progeny tested, while one dam had 5 progeny tested, with the average 1.24 progeny per dam.

Although the number of observations was only 1610, the complete pedigree file, which was taken from 1985, included 22472 animals. This was done in an attempt to increase the number of genetic ties and to gain in precision of estimation.

Statistical analysis. Initially a fixed models analysis, which included the fixed effects of year of test (1988 to 1993), farm (2) and age of dam and age upon entry into each testing phase as covariables (and first order interactions) were carried out. During subsequent runs non-significant (P>0.05) effects and interactions were removed until only those with a significant influence remained in the final models.

For the estimation of the (co)variance components and resulting $h^2$ and $r_g$ parameters a multivariate REML (six traits) model was fitted using the VCE software package of Groeneveld (1995) with analytic gradients. The starting values for the (co)variance components estimation, were located in the middle of the parameter space. Optimization was done using the UNCMIN (Nash's unconstrained BFGS) optimizer on the Cholesky factor. The stopping criterion was when the estimate has changed less than 0.005 over the last six iterations, i.e. when the gradients approach zero.

RESULTS AND DISCUSSION
Mean ages, weights and gains in the feedlot and pasture testing phases are presented in Table 1. The young bulls gained 147 kg (1.67 kg/day) in feedlot and 56 kg (0.60 kg/day) under pasture. The faster gain in feedlot indicates a more favourable environment but is also related to the higher early potential growth rate.

Table 1. Mean ages, weights and gains in feedlot and pasture phases

<table>
<thead>
<tr>
<th></th>
<th>Feedlot</th>
<th>Pasture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry age (days)</td>
<td>261</td>
<td>390</td>
</tr>
<tr>
<td>Entry weight (kg)</td>
<td>270</td>
<td>428</td>
</tr>
<tr>
<td>Exit weight (kg)</td>
<td>417</td>
<td>484</td>
</tr>
<tr>
<td>Length of test (days)</td>
<td>89</td>
<td>92</td>
</tr>
<tr>
<td>Average daily gain (ADG) (kg)</td>
<td>1.67</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Heritabilities and genetic correlations are presented in Table 2. Standard errors of these estimates varied from 0.003 to 0.008. The heritability estimates were almost similar across environments. Heritabilities for both weights and ADG tend to be higher than most published estimates for these traits (Woldehawariat et al., 1979; Koots et al., 1994). Contrary to what one would expect (Woldehawariat et al., 1979; Tess et al., 1984), the heritability for ADG-P is higher than for ADG-F.

The genetic correlations between weights at the start of each phase and the corresponding gains in those phases, are negative (-0.21 and -0.27 for feedlot and pasture, respectively), while the
corresponding genetic correlations with weights at the end of each phase are positive (0.69 and 0.41, respectively). The smaller bulls were therefore the faster growing ones in each phase.

Table 2. Heritabilities (on diagonal) of and genetic correlations between body weight and growth traits

<table>
<thead>
<tr>
<th></th>
<th>Wf-I</th>
<th>Wf-O</th>
<th>ADG-F</th>
<th>Wp-I</th>
<th>Wp-O</th>
<th>ADG-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wf-I</td>
<td>0.42</td>
<td>0.54</td>
<td>-0.21</td>
<td>0.56</td>
<td>0.54</td>
<td>0.01</td>
</tr>
<tr>
<td>Wf-O</td>
<td>0.43</td>
<td>0.69</td>
<td>0.84</td>
<td>0.69</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>ADG-F</td>
<td>0.39</td>
<td>0.44</td>
<td>0.34</td>
<td>0.41</td>
<td>0.41</td>
<td>-0.27</td>
</tr>
<tr>
<td>Wp-I</td>
<td>0.41</td>
<td></td>
<td>0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wp-O</td>
<td></td>
<td></td>
<td></td>
<td>0.41</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>ADG-P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.46</td>
</tr>
</tbody>
</table>

where Wf-I - weight at start of feedlot phase
Wf-O - weight at end of feedlot phase
ADG-F - average daily gain in feedlot
Wp-I - weight at start of pasture phase
Wp-O - weight at end of pasture phase
ADG-P - average daily gain on pasture

The genetic correlation between ADG-F and ADG-P is small and negative (-0.10). This indicates that growth performance in feedlot is genetically independent from growth rate on pasture. It suggests an almost total re-ranking of bulls PBV's from one environment to the other. According to Falconer (1950) departure from unity of the same trait measured in two environments is an appropriate measure of genotype x environment interaction when two environments are involved. Robertson (1959) derived the relationship between genetic correlation of the same trait and genotype x environment interaction with equal heritability in two environments and concluded that a correlation of less than 0.6 is a significant deviation from unity.

Comparable studies were carried out by De Nise & Ray (1987), Theron et al (1994) and Bradfield et al (1997). In all these cases genetic independency of growth performance under different management regimes were illustrated. Theron et al (1994) obtained a genetic correlation for preweaning gain which does not differ significantly from unity, while those for postweaning gain were close to zero.

CONCLUSIONS

Present results, based on the evaluation of young bulls on both feedlot and pasture performance, supports the evidence that superiority of gain under ad libitum feeding has a different genetic basis than superiority under limited feeding. They should therefore be treated as two independent traits. Selection should be applied on performance in either feedlot or pasture, but not on average Adg over both phases as is presently the case in this herd.

ACKNOWLEDGEMENT

The data used were recorded and provided by Mr Roger Wood of the Johannesburg City Council. His and his colleagues contributions are acknowledged. The authors also wish to thank dr. Eildert Groeneveld for the use of his VCE software package.
REFERENCES