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I ntroduction

Genomic Selection (GS), introduced by Meuwisseralet(2001), allows the use of high
density marker data to estimate genomic breedimgesa(GEBVs) on selection candidates
without phenotypic information. Marker effects astimated in a reference population (the
training dataset) containing individuals with batharker genotypes and trait phenotype
information, and then GEBVs of any genotyped indiisl (the validation dataset) can be
calculated using these estimates. Simulation aatl data studies have shown that this
method can predict GEBVs with high accuracy, wiblwér costs and shorter generation
intervals than traditional methods, as long asning datasets are sufficiently large.
Typically the reference population is a single brggopulation (or single line), and
individuals in the validation dataset come from s@me breed, though possibly from a
different generation. A large reference populatioom the validation dataset breed is
however not always available, and combining bre@dsa training dataset may be
advantageous. On the other hand, the predictivéyabf GS relies on markers accounting
for the effect on the trait of QTLs in linkage dijsdlibrium (LD) with them, and the
accuracy of prediction may be reduced becausecohgistent LD across breeds. Simulation
studies have shown that using a multi-breed reéergropulation can improve the accuracy
of GEBVs (de Roos et al. 2009, Ibanez-Escrichd.e&2(09), especially if breeds are closely
related or marker density is very high, suggesthag the increase in training dataset size
more than compensates for the loss of homogendiiiti-breed training sets may also allow
for higher accuracies because the markers sel@ttdee GS model are likely to be in LD
with a QTL across breeds and hence be more tijihigd to the QTL (de Roos et al. 2009).

Against this background, the objective of this studis to evaluate the predictive ability of
Genomic Selection across multiple populations iea dataset of broiler chicken lines.

Material and methods

Datasets. SNP genotype, phenotype and pedigree data fronbraiter chicken breeding
lines from one major global breeding company (Aeiad-td.), coded Line 1 to Line 10,
were used. The lines evaluated were representafiimes used in a commercial broiler

Department of Animal Science, lowa State Universkyes, lowa 50010
Aviagen Ltd., Newbridge, Edinburgh, EH28 8SZ, UK



breeding program and were closed populations whale undergone multiple generations
of selection. Selection pressure was differentefach line to the extent that considerable
differences in key traits now exist. A study of yoeis generations of the same lines
(Andreescu et al 2007) found that LD in these liegtends over shorter distances than
reported in other livestock species but was comsidbetween lines at short distances, with
correlations of LD measured by r greater than 0rcfosely related lines. A total of 154 to
201 individuals from each line that were repres@reaof males used for breeding for
several consecutive generations were used. Phexsotypre sire progeny means (over 5 to
836 progeny) adjusted for systematic environmesaftaicts and the estimated breeding value
of the dam for a body weight trait of moderate taduility. The correlation of sire means with
BLUP estimated breeding values exceeded 0.95 ih lgae. Genotype data for 12046 fairly
equally distributed SNPs were available for eagh.shll SNPs were used for analysis,
although several are fixed in one or more linesvileidon’t expect this to affect the analysis.
Because the number of genotyped individuals pex Vims limited, lines were pooled to
create cross-validation datasets. In datasetsacet 1O, the training dataset was composed of
9 lines and the remaining line was used for vailiatin datasets cvmix1, cvmix2, cvmix3
and cvmix4 each line was present in both the tngirdnd the validation dataset. Datasets
cvmix1l and cvmix2, were created by randomly assigmndividuals from each line to either
the training or validation datasets, in a proportad about 17:1. For datasets cvmix3 and
cvmix4, individuals were assigned (using a progpovided by David Habier) such that the
relationship between individuals in training versatidation datasets was low.

Statistical analyses. Two related models were used for analysis.

The first model is: iy=+ Zbk*gijk + g

where Y is the adjusted progeny mean of sire j from ling is a line-specific mean s the
effect of marker k, g the genotype of sire j in line i at marker k (@,br two times the allele
frequency in the line when missing), andage residuals distributed N(O,\{Jjnwhere V is
the residual variance ang the number of progeny. The second model also deciun a
polygenic term, p, assumed distributed N(B\V ) whereA is the relationship matrix based
on a 3-generation pedigree angli¥/the polygenic variance.

BayesC, a variation of the BayesB method introdungdleuwissen et al. (2001) was used
to fit these models. In BayesC, effects for markecduded in the model were assumed to
come from a normal distribution with common varian¢a. This method gives results
similar to BayesB but converges faster. The Gilamser was run for 100,000 iterations of
which 50,000 were burn-in. Priors for V,,Vand \, were invertedx? with parameters
chosen such that means were 200, 10, and2pg/, where Vg is 10 and 2pthe average
value of 2pqg over all segregating markers. Oth@icgs for scale parameters did not affect
results significantly. Small values were chosen @mgrees of freedom for both the
environmental (df=10) and the genetic variance 4jif= Polygenic effects were sampled
using the method of Garcia-Cortes and Sorenser6jl®arametert was set equal to 0.90.
Other values oft were also used but did not affect the predictivéitg of the model unless
extremely high. Results of the BayesC analyses wenepared with those from three other
methods: BayesB of Meuwissen et al. (2001) with.90, GBLUP, and BayesCGBLUP is
BayesC withr = 0. Bayes@ is a variation of BayesC whereis treated as unknown with



uniform(0,1) prior. Because the latter model cogeermuch slower, 200,000 iterations with
150,000 burn-in were used.

The GEBVs for individuals in the validation dataree&omputed using estimated marker and
polygenic effects from models 1 and 2. Predictibéity was computed as the correlation of
GEBVs with the adjusted progeny mean phenotypdiseivalidation dataset.

Results

The prediction of BVs for a line using a trainingtaset made up of the other 9 lines
(datasets cvl to cv10), resulted in correlationsvéen GEBVs and phenotypes in the
validation data sets ranging from -0.03 to 0.26 wBayesC was used (Table 1). The other
three methods resulted in a similar range of catimts, although there were sizeable
differences between methods for some datasets.pdsterior mean af from Bayes@ was
low, ranging from 0.24 to 0.39. The posterior meas independent of the initial value of
but the posterior distribution was very diffuseggesting that the accuracy of the BayesC
method may be underestimated due to a lack of cgenee.

Table 1: Correlations between GEBVsand progeny meansin validation datasets
separ ated by line and estimates of the proportion of non-zero SNP effects () from
BayesCr.

Dataset cvl c¢cv2 c¢cv3 cv4d cv5 cv6 cv/ cv8 cv9 cvl0
BayesC 0.13 0.05 0.18 0.08 -0.08.06 0.00 0.06 0.16 0.20
BayesB 0.10 0.01 0.17 0.07 0.06 0.12 0.12 0.01 o0.038
BayesG 0.09 0.06 0.14 0.08 0.00 0.07 0.01 0.10 0.10 0.21
GBLUP 0.09 0.06 0.13 0.08 0.01 0.08 0.00 0.11 0.021

b1 0.26 031 039 026 034 035 035 035 0.29 0.24

Validation correlations were much higher for sonsadets than others but this was not
consistently associated with the degree of relassiof the validation line to one or more
lines in the training dataset. However, in datasets to cv10, the relationship between
individuals in training and validations datasetswéways low because lines were separated
by at least several generations. When individuadsfevery line were present in both the
training and the validation dataset (cvmix 1 to x4l validation correlations were
substantially greater (Table 2). As expected, thisease was more marked for datasets
cvmixl and cvmix2, where validation and training selividuals could be more closely
related, than for datasets cvmix3 and cvmix4 wihbkese relationships were constrained to
be less than .5.

Table 2: Correlations between GEBVs and progeny meansin mixed validation datasets.

Dataset BayesC BayesB BayesC GBLUP
cvmixl 0.63 0.58 0.65 0.66
cvmix2 0.61 0.55 0.62 0.62
cvmix3 0.33 0.41 0.31 0.31

cvmix4 0.43 0.47 0.45 0.46




Discussion

Correlations between GEBVs and progeny means wasewhen validation individuals
came from a line that was not represented in thmitrg dataset, although LD at short
distances was fairly consistent across lines. Thasiderable differences in selection
pressure and environments between lines may bky pasponsible for the lack of accuracy,
as well as the limited marker density used in stigly. The GEBVs of individuals can be
predicted with high accuracy when the validatiome§ were represented in the training
dataset, even when the number of individuals ofsdmme line in the training dataset was
low. These results are consistent with studiesaitlec (Hayes at al. 2009) that have found
that using a training dataset of one breed to pt€dEBVs of individuals from a different
breed results in correlations close to 0, but cainigi breeds in the training dataset increased
accuracy. The dependence of accuracy of GEBV wiellof relatedness of validation and
training individuals suggests a large proportiorthef predictive ability of GS comes from its
prediction of additive relationships among indivéki This pattern was replicated whether
we used BayesB, BayesC, or BayesC

Choice of priors had little impact on the accurat¥sEBVs. This was true for both BayesB
and BayesC. The difference in accuracies betwegredts BayesB, BayeaCand GBLUP
were negligible, although the accuracy of Bayestay be underestimated due to lack of
convergence.

Conclusions

Genomic Selection methods have low accuracy whedigiing GEBVs of individuals from
lines not represented in the training data setutting even a small number of individuals
from the validation lines in the training data daorease accuracies appreciably, especially
when these individuals are highly related to vdlala individuals. The results are
independent of the Genomic Selection algorithm used
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