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ABSTRACT: Data were available from animals 
of two commercial dam populations: 1070 Dutch Landrace-
based and 1389 Large White-based. Four traits were 
analyzed: age at first insemination (AFI), total number of 
piglets born (TNB), litter birth weight (LBW), and litter 
variation (LVR). Deregressed estimated breeding values 
(DEBV) were used as the response variable. The accuracy 
of genomic estimated breeding values (GEBV) was the 
correlation between GEBV and DEBV. Scenarios were 
divided into two groups: within- and across-breed 
prediction. Accuracies for within-breed prediction for the 
four traits ranged from 0.14 to 0.70, indicating a modest to 
good predictive ability. Accuracies for across-breed 
prediction for AFI and TNB were not significantly different 
from zero, whereas accuracies for LBW and LVR ranged 
from 0.16 to 0.26. These results suggest that the accuracies 
are trait-dependent, but in general across-breed prediction 
was not effective in this data set.  
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Introduction 
 

Genomic selection (GS) is a very useful tool that 
capitalizes on the linkage disequilibrium (LD) between 
markers and the quantitative trait loci (QTL) (Meuwissen et 
al. (2001)). A training population is geno- and phenotyped 
and used to estimate the marker effects that will be used to 
compute the genomic breeding value (GEBV) of other 
genotyped animals in the prediction population. GS 
implementation depends on having accurate GEBV. GEBV 
accuracy depends on four factors: the level of LD between 
the single nucleotide polymorphism (SNP) and the QTL; 
the distribution of the QTL effects; the size of the training 
data set; and the heritability (h2) of the trait (Hayes et al. 
(2009a)). Increasing the training data set by adding animals 
from a different breed could potentially improve the 
accuracies, but only if linkage phase between markers and 
QTL as well as the genetic architecture of the trait are 
similar between the populations. Hence, the objective of our 
study was to assess the GEBV accuracy when using within- 
and across-breed training populations. 

 
Materials and Methods 

 
Data. Phenotypes and genotypes were available from 
animals of two pig populations born between 2006 and 
2012: 1070 Dutch Landrace-based and 1389 Large White-
based. Four female reproduction traits were analyzed: age 
at first insemination (AFI), total number of piglets born 
(TNB), litter birth weight (LBW), and litter variation 
(LVR). AFI was the age at the second estrus, at which time 
the first insemination was performed. TNB was the sum of 
the number of piglets either born alive or stillborn. LBW 

was the sum of individual birth weights of all piglets born 
in the same litter. Finally, LVR was the standard deviation 
of individual birth weight of the piglets from the same litter. 

Deregressed estimated breeding values (DEBV) 
were used as the response variable for each trait under 
study. The EBVs were deregressed using the methodology 
proposed by Garrick et al. (2009). The EBV of each animal 
was obtained from routine genetic evaluation performed by 
TOPIGS using MiXBLUP (Mulder et al. (2012)) in a 
multi-trait model. The h2 used for deregression were the 
same as those used in the routine genetic evaluation and 
were estimated using a pedigree-based relationship matrix. 
The h2 of the traits were: 0.30 for AFI, 0.11 for TNB, 0.38 
for LBW, and 0.14 for LVR.   

All individuals were genotyped using the Illumina 
PorcineSNP60 BeadChip (Ramos et al. (2009)). SNPs with 
GenCall<0.15, unmapped SNPs and SNPs located on either 
the X or Y chromosome, according to the Sscrofa10.2 
assembly of the reference genome (Groenen et al. (2012)), 
were excluded. Quality control was performed in all 
populations simultaneously, which involved excluding 
SNPs based on call rate (<0.95), minor allele frequency 
(<0.01), and deviations from Hardy-Weinberg equilibrium 
(χ²>600). After quality control, 42,139 SNPs remained out 
of the initial 64,232 SNPs. Individuals with missing 
genotype frequency >0.05 were removed as well. Missing 
genotypes of the remaining animals were imputed using 
BEAGLE 3.3.2 (Browning and Browning (2007)).  

 
Statistical analyses. SNP effects were estimated using the 
bigRR package (Shen et al. (2013)) implemented in R (R 
Development Core Team (2013)). We used the ridge 
regression - best linear unbiased prediction (GBLUP) 
model (Meuwissen et al. (2001)) to estimate the SNP 
effects. Traits were assumed to be affected by additive 
effects only. To estimate the GEBV accuracy, after 
estimating the SNP effects from the training data, the 
GEBV for animal k in the prediction data was calculated as:  

GEBVk =  µ + � xik
s=42139

i=1
g�i 

where 𝑥𝑖𝑘  is the genotype and 𝑔�𝑖  is the estimated SNP 
effect at locus i, and s is the total number of SNPs. The 
correlation between GEBV and DEBV of the same animal 
in the prediction data was computed, resulting in the GEBV 
accuracy. We compared our realized GEBV accuracy to the 
expected accuracy according to the formula derived by 
Daetwyler et al. (2010). 
 
Scenarios. Four scenarios were investigated. These can be 
divided into two groups according to the training and 
prediction data sets: 



 Scenarios 1-2: training and prediction data were 
subsets from the same population, i.e. prediction was 
within breed. These scenarios determined an upper 
limit of the accuracies and how good the model fits the 
within-breed prediction. 

 Scenarios 3-4: One population was used for training to 
predict the other population, i.e. prediction was across 
breeds. These scenarios determined how well across-
breed predictions perform.  
 

A total of 40 randomly generated training-testing 
evaluations were performed for scenarios 1-2. We randomly 
set aside part of the population as the prediction population 
(N=50) and used it in a later step to determine the accuracy 
of prediction. In these cases, the prediction population was 
sampled 40 times, generating 40 groups in which the 
accuracy was estimated. We used all available animals from 
a given population for scenarios 3-4 resulting in one 
accuracy. 
 

Results and Discussion 
 

For scenarios 1-2, accuracies for within-breed 
predictions for the four traits ranged from 0.14 to 0.70, 
indicating a modest to good predictive ability (Table 1). 
The expected accuracies according to Daetwyler et al. 
(2010) ranged from 0.39 to 0.95. Scenarios 3-4 that 
predicted performance in one population from another 
population performed poorly for AFI and TNB, where 
accuracies were not significantly different from zero. 
Accuracies for LBW and LVR ranged from 0.16 to 0.26. 

The expected accuracies were about three times higher 
ranging from 0.40 to 0.96 for these four traits (Table 1). 

According to the accuracies that were estimated 
for the four traits across all the scenarios, two groups can be 
formed: 1) AFI and TNB, 2) LBW and LVR. In general, 
AFI and TNB had lower accuracies than LBW and LVR. 
Additionally, for across-breed scenarios, GEBV of AFI and 
TNB could not be predicted at all, whereas LBW and LVR 
still demonstrated some predictive ability. In the within-
breed prediction, the accuracies of all traits were greater 
than zero. The h2 of the traits was expected to be a grouping 
factor as low-heritable traits have phenotypes that are less 
determined by genetics, and are envisaged to be less 
predictable via genomic selection than high-heritable traits 
(Resende et al. (2012)). Unexpectedly, the h2 does not 
separate the groups (AFI=0.30, TNB=0.11, LBW=0.38, 
LVR=0.14). We propose that the source of genetic 
influences is a possible reason for the grouping, with the 
first group, AFI and TNB, being the sow-dependent traits, 
and the second group, LBW and LVR, the traits where 
genetics of the piglets makes a contribution to the 
expression of the traits. Another possible explanation, at 
least for the differences observed in the across-breed 
predictions, is that there are more QTLs and SNP markers 
in the same linkage phase for LBW and LVR than for AFI 
and TNB, as the former two traits yielded higher 
accuracies. This grouping of traits in low and moderate 
accuracies of prediction shows that the GEBV accuracies 
may be more dependent on the (genetic architecture of) 
trait, than on the level of h2. For the utility of data from 

 
Table 1. GEBV accuracies using GBLUP for scenarios 1-4 for age at first insemination (AFI), total number of 
piglets born (TNB), litter birth weight (LBW) and litter variation (LVR). 

       Expected accuracy5 
Trait Heritability Scenario Training Prediction Accuracy Std. Error 50 250 1000 

AFI 0.30 

1 DL2 DL2 0.171 0.023 0.93 0.74 0.57 
2 LW2 LW2 0.141 0.023 0.94 0.79 0.64 
3 DL2 LW2 -0.05 0.034 0.93 0.75 0.58 
4 LW2 DL2 -0.01 0.034 0.94 0.79 0.64 

          

TNB 0.11 

1 DL2 DL2 0.241 0.033 0.83 0.56 0.39 
2 LW2 LW2 0.161 0.023 0.86 0.61 0.45 
3 DL2 LW2 -0.01 0.034 0.84 0.57 0.40 
4 LW2 DL2 0.01 0.034 0.87 0.62 0.45 

          

LBW 0.38 

1 DL2 DL2 0.631 0.013 0.94 0.78 0.62 
2 LW2 LW2 0.701 0.013 0.95 0.82 0.68 
3 DL2 LW2 0.26 0.034 0.94 0.79 0.63 
4 LW2 DL2 0.23 0.034 0.96 0.82 0.69 

          

LVR 0.14 

1 DL2 DL2 0.491 0.023 0.86 0.60 0.43 
2 LW2 LW2 0.461 0.023 0.89 0.65 0.49 
3 DL2 LW2 0.16 0.034 0.87 0.61 0.44 
4 LW2 DL2 0.18 0.034 0.89 0.66 0.50 

1 Estimates obtained by 40 randomly generated training-testing evaluation 
2 DL = Dutch Landrace, LW = Large White. 
3 Standard error of the accuracies’ mean  
4 Standard error of the correlation coefficient (accuracy) 
5 According to Daetwyler et al. (2010), using NQTL= 50, 250 and 1000 
 



other breeds in the application of genomic selection, each 
trait needs to be studied separately. 
 
Within-breed prediction. For scenarios 1-2, all traits had 
modest to good predictive ability. Realized accuracies LBW 
and LVR were within the range of the expected accuracies 
considering that the trait has between 250 and 1000 QTLs 
(Table 1). Realized accuracies for AFI and TNB, however, 
were lower than expected. These discrepancies may occur 
because there is incomplete LD between SNPs and QTL for 
these traits, a few genotypes are imputed or read wrongly 
(VanRaden et al. (2009)), or these traits are more polygenic 
(i.e. are affected by a larger number of QTL) than LBW and 
LVR.  
 In dairy cattle, Luan et al. (2009) found accuracies 
concordant to ours, when studying seven traits with h2 
ranging from 0.01 to 0.28 resulting in observed accuracies 
between 0.20 and 0.61. Within-breed prediction was also 
performed in dairy cattle by Hayes et al. (2009b) and their 
realized accuracies ranged from 0.49 to 0.71 among the five 
traits in study, which agreed with their expected accuracies. 
For LBW and LVR we found realized accuracies that met 
the expectations, similar to Hayes et al. (2009b), but not for 
AFI and TNB.  
 
Across-breed prediction. Some predictive ability was 
found when predicting across breeds for LBW and LVR, 
whereas for AFI and TNB all the accuracies were null. The 
accuracies did not reach the expected values, presumably 
because the prediction was across breeds, while the 
expectations are based on within-breed prediction.  
 In the study of Harris et al. (2008), the prediction 
across Holstein-Friesian and Jersey breeds of cattle was 
also studied. Predictions were not accurate, ranging from -
0.1 to 0.3 over 25 traits. In another study, Hayes et al. 
(2009b) predicted the GEBV of Jersey animals using a 
Holstein population as training data and vice-versa, 
resulting in accuracies ranging from -0.06 to 0.23 for five 
traits. Our results were very similar, ranging from -0.05 to 
0.26. 
 A simulation study (De Roos et al. (2009)) 
indicated that across-breed prediction is substantially less 
accurate than within- or multiple-population prediction. 
These lower accuracies were due to differences in phase 
between markers and QTL in the two populations. A 
marker may be in high LD with QTL in only one 
population, which results in poor predictions for other 
populations. In addition, other QTL variants and/or 
different QTL might segregate in different populations and 
the genetic background in the other line might change the 
effect of a specific QTL allele. 

 
 
 
 

Conclusion 
 
Within-breed prediction yielded modest to high 

accuracies, whereas across-breed prediction yielded null or 
low accuracies depending on the trait. The possible 
advantage of increasing the training population with 
animals from other breeds or using a different breed as 
training population needs to be evaluated for each data set 
in a trait-specific way.  
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