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Summary

A correct assessment of the effects that heat load has on animal performance is of main
interest not only for the quantification of the losses associated to it, but also for the correct
characterization of individual thermo-tolerance. The latter is key for the identification of
genome regions associated with animal thermo-tolerance. In the present study, nine
phenotypes have been proposed and their suitability in genome-wide studies has been
investigated. Two main approaches have been considered: a first one using pseudo-
phenotypes (obtained from the solutions of a mixed model including a norm of reaction to
individual heat load term but ignoring pedigree relationships) as phenotypes in the GWAS
studies, and a second one using deregressed proofs from those pseudo-phenotypes obtained
from a single-step approach. An FDR threshold of 10% was used to select relevant SNPs.
Results have shown that many of the markers bellow that threshold were associated with
phenotypes representing the animal level of production and located within genome regions
comprising production genes like DGAT1. However, 35 out of 95 and 42 out of 78 SNPS for
fat and protein, respectively, showed a significant association with phenotypes describing
production losses. The dgvGWAS approach identified more SNPs than pseudoGWAS
approach for fat content, but the behaviour was different for protein, where pseudoGWAS
captured a larger number of SNPs. These two traits appear to have similar heritabilities but
different genetic architecture what might be behind this different behaviour.
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Introduction

Dairy cows from highly selected populations greatly suffer the consequences of exposure to
high heat loads, which result in productive decays, reproductive impairment and
immunological depression (West, 2003; Hansen, 2009). A correct assessment of the effects
that heat load has on animal performance is of main interest not only for the quantification of
the losses associated to it, but also for the correct characterization of individual thermo-
tolerance. The latter is key for the identification of genome regions associated with animal
thermo-tolerance, for example in genome wide association studies (GWAS). The most
common approach to characterise individual thermotolerance at a large scale is through the
use of routine milk recording information merged with meteorological information that allow
quantification of the thermal load that animals endure (Misztal, 1999). This approach has the
advantage of using already available information and targeting economically important traits
such as production. However, it also has some associated problems. Firstly, the antagonistic
relationship between high production levels and heat tolerance represents a challenge since
selection based on genetic values decays in milk production data may lead to keep animals
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with lower production level (Bohmanova et al., 2015). Secondly, there is not a unique
approach to measure heat tolerance from productive data. The most common approach is to
use the slope of decay after a predetermined threshold but other approaches based on the use
of random regression models and the eigenvalues decomposition of the associated covariance
matrices can help to disentangle the productive and non-productive components of heat
tolerance (Carabafio et al., 2014, Macciota et al., 2017). Apart from how to define heat
tolerance, what dependent variable is most adequate for GWAS studies has been a matter of
discussion (Ekine et al., 2014), as it is the way in which all the available information
(phenotypes, pedigree and genomic) is optimally used to provide more accurate marker
selection (Zhang et al., 2016).

In this study, we will use fat and protein yield information from the official milk
recording scheme and official meteorological agencies to define alternative phenotypes for
heat tolerance and SNP marker information from dense panels to develop GWAS under two
different approaches.

Material and methods
Phenotypes

In the first part of this study, we addressed the characterization of the individual heat
tolerance by assessing the effect that HL has on individual’s fat and protein yields and as a
previous step for the identification of genome regions associated to heat tolerance. For that,
test day records of Holsteins cows under official milk recording programmes were provided
by the Spanish Friesian Association (CONAFE) and merged with meteorological information
for the dates of test day provided Spanish National Agency for Meteorology (AEMET) and
the Irrigation Advisory Service (SIAR). As phenotypes, we considered fat and protein
contents (Kg/day), while as measures of HL we used the daily average temperature (T) and
the daily average temperature-humidity index (THI; NRC, 1971).

Because cold and heat tolerance seem to be have different genetic background
(Carabafio et al 2014) and their joint modelling may be complex, data taken under cold
conditions (from December through February) were excluded. Moreover, since an
individual’s tolerance was defined from fitting norms of reaction to HL for each cow,
lactations that did not include 4 or more test day records and lactations that did not include at
least one record taken under heat stress (Tae> 25 °C or THI,z> 70) were excluded from the
analyses to ensure that enough information was present to obtain estimates of declines in
production associated to high HL. HS effects on individual production were studied using a
Bayesian framework, with the Gibbsf90 program (Misztal et. 2008) and using the model,

(1)

, where yijum 1s the test day fat or protein yield, HTD; is the herd-test day of recording,
LDIV,; is the lactation-days in milk combination, Z(HL;)k is the k" covariate of the quadratic
Legendre polynomial evaluated at the heat load (HL) corresponding to the i" HTD of
recording and transformed to a [-1,1] scale, by is the k' regression coefficient of the Legendre
polynomial, oy is the k™ regression coefficient of the Legendre polynomial corresponding to
animal | and ejjum 1s the residual term.

Solutions from the model above were then used to define a total of nine pseudo-
phenotypes: the intercept term of the regression for each animal (bo), representing the
production level, the linear (57) and quadratic (b2) regression coefficient estimates for each
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animal, genetic slopes of the individual curves (slg) at mild (slg /8 and slg 64 for T and
THI, respectively), moderate (slg 22 and slg 68 for T and THI) and high (s/g 26 and slg 72
for T and THI) HL, and the scores corresponding to the first (eigen 1), second (eigen 2) and
third (eigen 3) eigenvectors obtained from the eigen-decomposition of the (co)variance
matrix between regressions for the 3 Legendre regression coefficients for each animal. Slopes
at a given HL value were obtained from the derivative of the individual curve at a given HL
value, which is a function of the estimated regression coefficients for each animal. These
pseudo-phenotypes were used as phenotypes in the GWAS analyses.

Genotypes

Genotypes from 3,165 Holstein bulls obtained with the Illumina BovineSNP50 BeadChip
were provided by CONAFE. For the association study, only autosomal markers were
considered. Markers with a call rate below 90%, with a MAF < 0.05 or not satisfying the
Hardy-Weinberg equilibrium (HEW; p>0.0001) were discarded. After QC, a total of 3,165
and 44,081 markers remain for the association analysis.

Genome-wide association studies (GWAS)

Two different approaches were considered when conducting the GWAS analyses: (i)
pseudophenotypes for cows obtained from solutions to (1) were used to obtain, from a
weighted average of the values of their daughters, the bulls phenotypes for GWAS
(pseudoGWAS) (i1) pseudophenotypes of cows were used as dependent variables in a single-
step genomic evaluation approach (Legarra et al., 2014), where genomic and pedigree
information are mixed to predict the genetic value of animals with data and their relatives.
After deregression of the estimated genetic values, the deregressed proofs were used as
phenotypes for bulls in the GWAS (dgvGWAS). Both EBVs from single-step GBLUP and
deregressed proofs were obtained using BLUP90 family of programmes. GWAS studies were
conducted using the GenABEL R package (GenABEL project developers, 2013) using a
mixed-effects model that included information on genomic relationships between genotyped
bulls to account for possible subpopulation structures and to address the polygenic
contribution to each one of the pseudo-phenotypes. For each of the two analyses procedures,
trait (fat or protein) and meteorological measure (T and THI), comparisons between markers
showing a significant association with each one of the nine pseudo-phenotypes were made.
Furthermore, genes containing or next to those markers were gathered using the cow
assembly Bos taurus UMD 3.1.1/bosTau8.

Results and discussion

Figure 1 shows the matrices of SNPs correspondence between the nine pseudo-phenotypes for
each trait (daily fat and protein yields), meteorological (daily average temperature and THI)
and GWAS procedure (pseudoGWAS vs. dgvGWAS; see materials and methods). The total
number of distinct SNPs that showed FDR below the 10% threshold were 95 for fat and 78
for protein content, regardless the climatic variable and the type of phenotype used. The
number of SNPs only involved on the phenotypes related with production level (b, and
eigen_1) were 60 and 36, for fat and protein, respectively. DGAT1 was contained in one of
the regions for fat. Nevertheless, our major interest was to identify indicators of heat stress
independent of production level therefore, we paid attention to slopes of decay and 2" and 374
eigenvalues. Hence, we found 35 SNPs for fat and 42 SNPs for protein out of the total. Two



Proceedings of the World Congress on Genetics Applied to Livestock Production, 11.831

SNPs were common to both, fat and protein indicators. A relevant number of genes are
located surrounding these SNPs. An overview, has allowed us finding a number of ribosomal
genes in different chromosome with a well-known co-chaperone function. In addition, some
genes involved in feed efficiency and appetite have been identified. In general, dgvGWAS
approach identified more SNPs than pseudoGWAS approach for fat content, but the
behaviour was different for protein, where pseudoGWAS captured a larger number of SNPs
bellow the 10% FDR threshold. Initially, these two traits seem to have similar heritability but
a different genetic architecture as it is suggested by the major effect of DGAT1 on fat content
(Grisart et al., 2022).
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Figure 1. Matrices showing SNPs correspondence between Heat Stress phenotypes for each of the
analyses considered (pseudoGWAS and dgvGWAS). Daily fat (f) and protein (p) contents, daily
average temperature (T) and THI, and the nine pseudo-phenotypes considered in this study:
intercept (bo), linear (bl) and quadratic (b2) coefficients from linear regression, first three eigen-
values (eigen_1, eigen 2 and eigen 3) and genetic slopes at different temperatures (slg 18, slg 22
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and slg 26) and THIs (slg 64, slg 68 and slg_72) are represented.



